Ю.В.Кулаков, И.Ю.Малышенко, В.И.Коренбаум

ВОЗМОЖНОСТИ КОМБИНИРОВАННОЙ БРОНХОФОНОГРАФИИ В ДИАГНОСТИКЕ ПНЕВМОНИЙ

Кафедра внутренних болезней №3 Владивостокского государственного медицинского университета, лаборатория инструментальных методов гидрофизики Тихоокеанского океанологического института ДВО РАН

ABILITIES OF COMBINED BRONCHOPHONOGRAPHY IN THE DETECTION OF PNEUMONIA

Yu.V.Kulakov, I.Yu.Malyshenko, V.I.Korenbaum

Summary

The method of combined bronchophonography (BPG), which provides sound selection of air and structural voice conduction to a chest wall, was applied in 74 patients with bacterial pneumonia. A control group involved 55 healthy subjects. All the persons underwent the BPG 2 to 3 times at intervals. The results were compared with clinical and radiological findings. A pneumonic focus situated corresponding to radiological and physical data was detected in 69 pneumonia patients (the sensitivity was 0.93). The acoustic focus revealed had a reinforced structural sound conduction and a weaken air sound conduction, was placed asymmetrically and disappeared over time according to the patient's recovering. False positive results were obtained in 3 controls (the specificity was 0.94). Therefore, the BPG can be used as an additional objective method for the diagnostics of pneumonia and monitoring the dynamics of a pneumonic focus.

Резюме

Методом комбинированной бронхофонографии (КБФГ), обеспечивающей разделение звуков воздушного и структурного проведения голоса на грудную стенку, обследованы 74 больных с бактериальной пневмонией. Контрольную группу составили 55 здоровых лиц. Всем обследованным КБФГ проводили в динамике 2–3 раза, результаты сопоставляли с клинико-рентгенологическими данными. Пневмонический очаг, соответствующий по локализации рентгенологическим и физикальным данным, диагностирован у 69 больных пневмонией (чувствительность 0,93). Выявленный акустический очаг характеризовался усилением структурного и ослаблением воздушного звукопроведения в нем, асимметричностью расположения и исчезновением в динамике параллельно выздоровлению больного. Ложноположительный результат в контрольной группе получен у 3 человек (специфичность 0,94). Таким образом, КБФГ может быть использован в качестве дополнительного объективного метода для диагностики пневмоний и динамического мониторинга изменений в пневмоническом очаге.

Уровень диагностических ошибок при использовании традиционных методов исследования легких попрежнему остается достаточно высоким [7]. В этих условиях актуальным является разработка новых информативных неинвазивных методов диагностики пневмоний, которые могли бы использоваться на амбулаторно-поликлиническом этапе лечебно-диагностического процесса [6,7].

Одним из перспективных направлений считается изучение возможности применения в клинической практике акустических методов исследования легких (бронхофонография, пневмофонография), позволяющих объективно оценить параметры звуковых сигналов на поверхности грудной клетки [1,4,5]. Интенсивные исследования в этой области проводятся и за рубежом [8,9,12]. В то же время работ по изучению звукопроведения в легких при очаговых процессах

не много [12]. Одной из причин этого, возможно, является взаимная маскировка звуков, проводимых на грудную стенку по воздушным каналам и структуре легких [5]. Метод, основанный на разделении звуков воздушного и структурного проведения голоса на грудную стенку, далее называемый комбинированной бронхофонографией (КБФГ), был предложен в работах [2,10] и получил подробное акустическое обоснование в статье [3].

Цель исследования состояла в разработке критериев акустической диагностики очага у больных пневмонией и оценке диагностических возможностей метода КБФГ в сравнении с рентгенографией и аускультацией.

Обследованы 74 больных бактериальной пневмонией (37 мужчин и 37 женщин), от 17 до 70 лет, средний возраст 46,3 года. В первые 3 сут от начала

заболевания обратились 59 больных, остальные — на 4—7-е сутки. У 57 человек наблюдалось легкое течение пневмонии, у 16 — течение средней тяжести и у 1 — тяжелое течение. Все пневмонии были внебольничными, очаговыми и неосложненными.

Рентгенологически инфильтрация легочной ткани была выявлена у 84% больных со средними размерами пневмонического очага 3-4 см; локальные перибронхиальные и периваскулярные изменения — у 12% больных. У 3 (4%) пациентов пневмония была установлена клинически. Распространение воспалительного процесса в пределах одного сегмента легких наблюдалось у 52,7% больных, двух сегментов — у 39,2%, трех сегментов — у 8,1% больных.

При физикальном обследовании учитывалась асимметричность симптомов над областью проекции очага пневмонии на грудную стенку. Отставание грудной клетки в акте дыхания на стороне поражения определялось у 23% больных, изменение голосового дрожания — у 27% больных (усиление у 14,9%, ослабление у 12,1% больных). Укорочение перкуторного звука обнаружено у 33,8% больных. Аускультативно изменение характера основного дыхательного шума было выявлено у 44,6% больных (ослабленное везикулярное дыхание у 25,7%, жесткое дыхание у 18,9% больных), выслушивались хрипы у 29,7% больных (влажные мелкопузырчатые хрипы у 27%, сухие у 2,7% больных). Бронхофония была изменена у 40,5% больных (усилена у 21,6%, ослаблена у 18,9% больных).

Пневмония локализовалась в правом легком у 55,4% больных, в левом легком у 39,2% больных. В 5,4% случаев пневмония была двусторонней. В нижних долях очаг находился у 50% пациентов, в средней доле и в язычковых сегментах — у 32,4%, в верхних долях (в 1-3-м сегментах) — у 17,6% больных.

По этиологии пневмонии были в 35,7% случаев пневмококковыми, в 17,9% — стрептококковыми, в 14,8% возбудителем являлась гемофильная палочка, а в 32,1% случаев возбудитель не идентифицировался.

Контрольную группу составили 55 практически здоровых некурящих человек (25 мужчин и 30 женщин), от 19 до 26 лет (средний возраст 21,3 года).

КБФГ проводилась по следующей методике. Двухканальный акустический датчик [3] устанавливался врачом последовательно в каждое межреберье, по всем топографическим линиям грудной клетки, по задней, боковым и передней ее поверхностям. При обследовании пациент произносил фразу "три три". Во время исследования пациент находился в положении сидя, режим дыхания обычный. Сигналы, принятые датчиком, усиливались на 30 дБ, фильтровались в полосе частот от 100 до 1000 Гц и записывались на измерительный магнитофон. На компьютере проводилась взаимноспектральная обработка сигналов, поступающих по каналам датчика [3]. Интерпретация спектров в каждой точке обследования проводилась в соответствии с критериями отклонения акустических сигналов от нормы [2,10]. Результат отображался в тональностях серого цвета на карте проекции легких (см. рисунок).

КБФГ больным проводилась в динамике (2-3 раза) параллельно с рентгенологическим исследованием. Здоровым лицам КБФГ проводилась 1-3 раза. Среднее количество анализируемых точек у одного пациента 64.

Для оценки повторяемости данных КБФГ 32 человека из контрольной группы были обследованы 2-3 раза в один день и/или в течение 3-5 дней. Повторяемость результатов в каждой из исследуемых точек у одного и того же обследуемого в среднем составила 86,4%. Не было выявлено влияния на показания КБФГ толщины подкожного жирового слоя, а также частичного смещения датчика на костные структуры грудной клетки.

Нормальный вид взаимных спектров КБФГ и критерии отклонения от нормы подробно описаны ранее [2,10]. В нашем исследовании в качестве основных критериев использовались: ослабление воздушного проведения (критерий 1), усиление структурного проведения (критерий 2), ослабление структурного проведения (критерий 3). Кроме того, наблюдались сочетания этих критериев друг с другом и с нормой (см. рисунок).

При анализе акустических сигналов на поверхности грудной клетки у здоровых лиц выявлено, что вид взаимного спектра не зависит от антропометрических данных, однако имеются различия в спектре в зависимости от пола. Так, у всех мужчин наблюдаются 3 хорошо выраженных спектральных пика в областях частот: 110–130, 230–270, 350–400 Гц. У женщин первый и третий из указанных пиков выражены слабее или не наблюдаются вовсе.

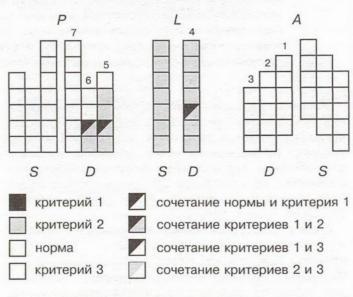


Рис. Карта КБФГ обследования больного И., 36 лет, с локализацией пневмонии в нижней доле справа (8-й и 9-й сегменты) на 3-и сутки от начала заболевания.

A — передняя поверхность, P — задняя поверхность, L — боковые поверхности, D — правая сторона, S — левая сторона.

Были выявлены также спектрально-топографические закономерности звукопроведения в легких. Соотношение воздушной и структурной составляющих звукопроведения изучалось над нижними (10, 9, 8-й сегменты), средними (4, 5 и 6-й сегменты) и верхними (1, 2 и 3-й сегменты) поясами легких. Данные зоны были выбраны с учетом их симметричного расположения справа и слева и соответственно степени приближенности к источнику структурного звука (трахея и главные бронхи). Так, на частотах первого пика звукопроведение в норме остается чисто воздушным. Исключение составляет лишь надключичная область. На частотах второго и третьего пиков в верхних поясах легких доминирует структурное проведение, что объясняется их близким расположением к источнику структурного звука. В средних отделах легких на этих частотах также преобладает структурное проведение, однако доля его уменьшается при смещении от окологрудинной линии в сторону околопозвоночной. В нижних отделах легких здесь наблюдается воздушное проведение, что объясняется их максимальной удаленностью от источника структурного звука, а также наибольшей воздухонаполненностью в сравнении с другими отделами легких. Данное проведение хорошо согласуется с предсказаниями теоретической модели [3]. Вместе с тем у отдельных лиц встречаются и индивидуальные вариации в сторону некоторого преобладания воздушности или, наоборот, структурности в звукопроведении, наблюдаемые над всей поверхностью грудной клетки. У всех обследованных здоровых лиц наблюдалось практически одинаковое соотношение воздушной и структурной составляющих звукопроведения в симметричных участках на поверхности грудной клетки. Последнее примечательно в связи с тем, что объективные характеристики традиционного варианта звукопроведения у здоровых, по данным [11], обладают значительной асимметрией.

При исследовании контрольной группы обнаружено, что у 91% человек на общем фоне акустической нормы имеются точки с критериями отклонения от нормы. Эти точки чаще расположены одиночно и асимметрично, что может быть связано и с метрологическими погрешностями. При появлении групп точек (до 3) они расположены симметрично, что указывает на индивидуальный характер звукопроведения, являющийся скорее всего вариантом нормы.

С целью разработки диагностических критериев пневмонического очага, выявляемого методом КБФГ, мы проанализировали особенности взаимных спектров, количество лежащих рядом точек с критериями отклонения от нормы, их локализацию и качественную структуру (по критерию патологии) у здоровых лиц и больных пневмонией и оценили достоверность различий между этими двумя группами.

Взаимным спектрам больных присущи в основном те же свойства, что и взаимным спектрам здоровых лиц. Одной из отличительных особенностей больных было расширение частотных спектров звукопроведения над всей поверхностью грудной клетки или

над пневмоническим очагом в высокочастотную область до 600-700 Гц, что является проявлением усиления структурного проведения (у здоровых не более 400 Гц). Появление этих признаков у больных пневмониями связано, очевидно, с воспалительным отеком и уплотнением стенок бронхов и, следовательно, с лучшим и более распространенным проведением звуковых колебаний по ним, особенно если они прилежат непосредственно к очагу воспаления. По мере выздоровления данные признаки исчезают. У части больных (67,6%) отмечалось также существенное снижение частоты второго резонансного пика до диапазона 170-220 Гц (p<0,001, t-критерий).

В отличие от здоровых у больных пневмонией встречаемость точек с критериями отклонения от нормы оказалась в 3 раза выше; эти точки были расположены асимметричными группами, в области проекции очага пневмонии на грудную стенку. Акустически над областью пневмонического очага у всех больных наблюдалось резкое изменение соотношения воздушной и структурной составляющих звукопроведения, описываемые критериями 1–3. Локализация акустического очага соответствовала рентгенологическим и физикальным данным.

Методом КБФГ акустический очаг был выявлен у 93,2% больных пневмонией (чувствительность 0,93). Отличительной особенностью качественной структуры обнаруженных акустических очагов было обязательное наличие в них точек с критериями отклонения от нормы 1 и/или 2, сочетаний 1 и 2 (см. рисунок). Эти акустические изменения в очаге пневмонии в виде ослабления воздушного и усиления структурного звукопроведения согласуются с предсказаниями модели [3] и традиционными представлениями о патоморфологии воспалительного процесса в легких: зона снижения пневматизации (синдром уплотнения легочной ткани), обтурация (полная или частичная) секретом подводящего воздуховода. Кроме того, у всех больных в области периферии пневмонического очага располагались также точки с критерием 3. Акустически это характеризует увеличение затухания в воздуховоде, что может быть обусловлено изменением диаметра просвета бронха (скопление секрета, отек слизистой оболочки).

Количество точек с критериями отклонения от нормы в акустическом очаге у больных варьировало от 4 до 16 точек, составляя в среднем $(M\pm\sigma)$ 6,72±2,85 (исключены 5 пациентов, у которых очаг не был выявлен акустически). В группе здоровых количество точек в ложноположительном очаге составило 2,14±0,36. В качестве порогового числа точек с критериями отклонения от нормы в акустическом очаге, отделяющего истинный очаг от ложноположительного, была выбрана величина 3. Различия между группами больных и здоровых по данному признаку высокодостоверны $(p=3,7\cdot10^{-21},\ t$ -критерий). С учетом данного порога ложноположительный результат КБФГ был получен у 3 человек из группы здоровых (специфичность 0,94).

Достоверность выявленного акустически очага у всех больных верифицировалась его положительной динамикой в виде постепенного уменьшения в размерах и исчезновения в согласии с клинико-рентгенологическими изменениями.

Напомним, что рентгенологически пневмония идентифицирована у 95,9% больных, а изменения бронхофонии над областью проекции очага пневмонии на грудную стенку выявлялись у 40,5% пациентов. Таким образом, метод КБФГ не только позволяет объективизировать параметры принимаемых с поверхности грудной клетки звуковых сигналов, но и более чем в 2 раза превосходит по чувствительности (приближаясь по этому параметру к рентгенографии) субъективную оценку звукопроведения голоса на грудную стенку. Интересно отметить, что при среднем размере очага рентгенологически 3-4 см, физикальные изменения распространялись на значительно большую площадь — 2-3 сегмента. Размеры же выявлямого нами акустического очага занимали промежуточное значение, указывая на более высокую разрешающую способность метода КБФГ, по сравнению с его субъективным аналогом. Достижение разрешения, характерного для рентгенографии, акустическим методом принципиально невозможно. Однако важным достоинством КБФГ является отсутствие лучевой нагрузки на пациента.

Ложноотрицательные результаты КБФГ были получены у 5 больных с локализацией пневмонии в средних поясах легких. При этом рентгенологически у всех больных определялась инфильтрация легочной ткани, а физикально пневмонию можно было заподозрить лишь у одного больного. По-видимому, сложность выявления пневмонии данной локализации, что часто имеет место в клинической практике, можно объяснить не только характеристиками самого очага (глубиной залегания и размерами), но также и особенностями звукопроведения в этих поясах легких. Близость верхних и средних поясов к источнику структурного звука создает хорошие условия для усиленного проведения звуковых волн. Акустически здесь в норме определяется преобладание структурного механизма звукопроведения над воздушным. Поэтому в данном случае структурный механизм как бы маскирует очаг уплотнения легочной ткани.

Метод КБФГ перспективен для динамического мониторинга пневмонического очага. Наблюдалась даже суточная динамика состояния больного [2], согласующаяся с клиническими данными. В случае прогрессирования воспалительного процесса акустический очаг увеличиваетя в размерах, а при благоприятном течении — постепенно уменьшается в размерах. Однако полное восстановление акустической

картины в легких наступает раньше, чем рентгенологической. В частности, при рентгенологической картине, характерной для стадии разрешения пневмонии, по данным КБФГ определяется акустическая норма.

Выводы

- 1. Метод КБФГ имеет высокие операционные характеристики (чувствительность 0,93, специфичность 0,94) и может быть использован в качестве объективного дополнительного метода диагностики пневмоний.
- 2. Физиологичность метода КБФГ, безвредность, простота в применении и доступность для пациента обусловливают возможность его использования как в амбулаторных, так и стационарных условиях.
- 3. Метод перспективен для динамического мониторинга пневмонического очага с целью снижения лучевой нагрузки на пациентов.

ЛИТЕРАТУРА

- Клебанов М.А. Фонореспирография и перспективы ее использования. Тер. арх. 1969; 41 (3): 57-63.
- 2. Коренбаум В.И., Кулаков Ю.В., Малышенко И.Ю., Тагильцев А.А. Некоторые возможности наблюдения за течением легочных заболеваний методом комбинированной бронхофонографии. Вестн. новых мед. технол. 1997; 4 (3): 79-81.
- 3. Коренбаум В.И., Тагильцев А.А., Кулаков Ю.В. Особенности передачи звука голоса человека на стенку грудной клетки. Акуст. журн. 1998; 44 (3): 380-390.
- Медведев М.Л., Тартаковский М.Б., Березный Е.А, Минкин Р.Б. Применение фонореспирографического метода в диагностике рака легкого. Вопр. онкол. 1968: 14 (3): 60-67.
- Немеровский Л.И. Пульмофонография. М.: Медицина; 1981. 29-73.
- Сильвестров В.П., Федотов П.И. Пневмонии. М.: Медицина; 1987. 47–171.
- 7. *Чучалин А.Г.* Пневмония актуальная проблема медицины. Пульмонология 1997; 1: 75–91.
- Dalmay F., Antonini M.T., Marquet P., Menier R. Acoustic properties of the normal chest. Eur. Respir. J. 1995; 8: 1761-1769.
- Gavriely N., Nissan M., Cugell D.W., Rubin A.H. Respiratory health screening using pulmonary function tests and lung sound analysis. Ibid. 1994; 7: 35–42.
- Korenbaum V.I., Kulakov Yu.V., Tagiltsev A.A. A new approach to acoustical evaluation of human respiratory sounds. Biomed. Instrum. Technol. 1998; 32 (2): 147–156.
- Pastercamp H., Patel S., Wodiska G.R. Asymmetry of respiratory sounds and thoracic transmission. Med. Biol. Eng. Comput. 1997; 35: 103–106.
- Pasterkamp H., Kraman S.S., Wodicka G.R. Respiratory sounds. Advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 1997; 156: 974-987.

Поступила 18.07.01